Synthesis of γ -MnO₂ from LiMn₂O₄ for Li/MnO₂ Battery Applications

M. M. THACKERAY AND A. DE KOCK

National Institute for Materials Research, CSIR, P.O. Box 395, Pretoria 0001, South Africa

Received November 16, 1987

Introduction

 γ -Manganese dioxide (γ -MnO₂) is used widely as an electrode material in zinc cells, for example, in Leclanché and alkaline cells, and in lithium cells (1, 2). It can be synthesized as a high purity product either electrolytically (EMD) or by various chemical methods (CMD); the preferred material for most battery applications is EMD. The structure of γ -MnO₂ may be regarded as an intergrowth of a rutile- and a ramsdellite-type phase. EMD contains, typically, 4-5 w/o H₂O which is present as surface and occluded water. The water component of EMD is essential for the effective operation of aqueous zinc cells; however, in nonaqueous Li/MnO2 cells the water must be removed to ensure a long shelf-life and a high discharge capacity. In practice it is difficult to remove the water entirely from EMD. Heat treatment of EMD to 350-420°C, which causes a transformation of the γ -MnO₂ to an electrochemically active γ/β -MnO₂ phase, leaves 1-2 w/o H_2O bound to the crystal lattice (3). If heated above 450°C, the γ/β -MnO₂ phase loses oxygen and the remaining water to 0022-4596/88 \$3.00

Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved. form Mn_2O_3 , which has inferior electrochemical properties.

This paper reports a novel method for synthesizing an almost anhydrous γ -MnO₂ product by acid digestion of the spinel LiMn₂O₄. The γ -MnO₂ product can be completely dehydrated at 300°C and yields a predominantly β -type phase which shows good electrochemical activity in lithium cells. Manganese dioxide phases prepared by this method are compared with those obtained from the acid digestion of another spinel, Mn₃O₄.

Experimental

LiMn₂O₄ was prepared by the solid-state reaction of Mn_2O_3 or Mn_3O_4 with Li₂CO₃ (Koch Light, 99%) in air, initially at 600°C to decompose the Li₂CO₃ and finally at 900°C for 16 hr. Mn_2O_3 and Mn_3O_4 samples were prepared by heating EMD (obtained from Delta (EMD) (Pty) Ltd, Nelspruit, South Africa) in air to 600 and 1000°C, respectively, for 22 hr. Various types of MnO_2 were prepared by the digestion of Li Mn_2O_4 and Mn_3O_4 in 0.5 M H₂SO₄ at various temperatures. The products were heated for 22 hr, in air, at temperatures be-

BRIEF COMMUNICATIONS

TABLE I

Sample no.	Starting material	Reaction temp (°C)	Reaction time (days)	Heat treatment (°C)	End product	[H+] (w/o)
1	LiMn ₂ O ₄	25	4	75	λ-MnO ₂	0.03
2	LiMn ₂ O ₄	30	14	75	λ/γ -MnO ₂	0.15
3	LiMn ₂ O ₄	40	13	75	γ-MnO ₂	0.13
4	LiMn ₂ O ₄	40	13	120	γ-MnO ₂	0.11
5	LiMn ₂ O ₄	40	13	200	γ-MnO ₂	0.09
6	LiMn ₂ O ₄	40	13	300	β -MnO ₂	0.02
7	LiMn ₂ O ₄	40	13	350	β-MnO ₂	0.01
8	LiMn ₂ O ₄	60	3	75	γ-MnO ₂	0.21
9	LiMn ₂ O ₄	80	1	75	γ-MnO ₂	0.25
10	LiMn ₂ O ₄	90	7	75	γ-MnO ₂	0.35
11	Mn ₃ O ₄	30	7	75	γ -MnO ₂	0.49
12	Mn ₃ O ₄	60	1	75	γ -MnO ₂	0.51
13	Mn ₃ O ₄	60	4	75	γ -MnO ₂	0.32
14	Mn ₃ O ₄	60	4	200	γ -MnO ₂	0.26
15	Mn ₃ O ₄	60	4	300	γ -MnO ₂	0.17
16	Mn ₃ O ₄	60	4	350	γ/β -MnO ₂	0.12
17	Mn ₃ O ₄	95	0.25	75	γ-MnO ₂	0.41
18	EMD (IC.1)			75	γ -MnO ₂	0.50
19	EMD (Delta)	—	_	75	γ-MnO ₂	0.50
20	EMD (Delta)		_	350	γ/β -MnO ₂	0.10
21	EMD (Delta)	_	_	420	γ/β -MnO ₂	0.09

Reaction Conditions Used for the Preparation of Various MnO_2 Samples from $LiMn_2O_4$ and Mn_3O_4 in 0.5 M H₂SO₄ and Their [H⁺] Concentration

tween 75 and 350°C to remove surface and occluded water.

The water content of each MnO_2 sample was assessed in terms of the [H⁺]-ion concentration which was determined by gravimetric methods. Particle-size analyses were undertaken on a Malvern particle-size analyzer. Powder X-ray diffraction patterns were obtained on an automated Rigaku diffractometer with CuK α radiation, monochromated by a graphite single crystal.

Results and Discussion

The reaction conditions used for the synthesis of MnO_2 samples from $LiMn_2O_4$ and Mn_3O_4 are summarized in Table I. The [H⁺] concentration in each sample and in EMD standard samples is also tabulated; an [H⁺] concentration of 0.11 w/o is equivalent to 1 w/o H₂O. The powder X-ray diffraction patterns of LiMn₂O₄ and some selected MnO₂ samples, between 15 and 70°2 θ , are compared in Fig. 1.

The [H⁺] concentration in two unheated EMD standard samples is 0.5 w/o. By contrast, the $[H^+]$ concentration in MnO₂ samples prepared from LiMn₂O₄ varies widely and is highly dependent on the reaction temperature and time. At 25°C, lithium is extracted from LiMn₂O₄ and yields an anhydrous, highly crystalline, λ -MnO₂ phase which retains the Mn₂O₄ spinel framework structure (Sample 1) (4); this phase has been well characterized, both structurally and electrochemically (5-7). As lithium is only a light scatterer of X-rays, the powder X-ray diffraction pattern of λ -MnO₂ closely resembles that of LiMn₂O₄ (Figs. 1a and 1b).

If the reaction temperature is raised to 40° C and the reaction time extended, a sin-

FIG. 1. Powder X-ray diffraction patterns of (a) $LiMn_2O_4$, (b) λ -MnO₂, (c) γ -MnO₂ from $LiMn_2O_4$ at 40°C, (d) EMD standard, (e) γ -MnO₂ from $LiMn_2O_4$ at 90°C, and (f) β -MnO₂ from γ -MnO₂ (Sample 3) heated at 300°C. CuK α radiation.

glc-phase γ -MnO₂ product is obtained (Sample 3, Fig. 1c); this product is significantly more crystalline then EMD (Sample 19, Fig. 1d) and contains only about onequarter of the water content of EMD ([H⁺] = 0.13). The X-ray pattern of Sample 3 is similar to a CMD product (8, 9). A more rapid conversion from LiMn_2O_4 to γ -MnO₂ can be achieved by raising the reaction temperature above 40°C (Samples 8–10), but these products contain a higher water content than Sample 3, as reflected in their [H⁺] content of 0.21, 0.25, and 0.35 w/o, respectively.

Samples with a relatively high water content were generally less crystalline than Sample 3 and adopted greater EMD-like character, for example, Sample 10 (Fig. 1e).

It is well-known that acid digestion of Mn₃O₄ results in the formation of γ -MnO₂ (10). The water content of these samples, however, is significantly higher than those prepared from LiMn₂O₄ at the same temperature. For example, a γ -MnO₂ phase produced from Mn₃O₄ at 30°C after 7 days (Sample 11) has an [H⁺] concentration of 0.49% and an EMD-like diffraction pattern, whereas the product synthesized from LiMn₂O₄ at 30°C after 14 days (Sample 2) has an $[H^+]$ content of only 0.15% and an X-ray pattern characteristic of a two-phase λ/γ -MnO₂ product. The absence of the λ -MnO₂ phase in the X-ray patterns of Mn₃O₄ samples that had been treated with acid, particularly at room temperature, suggests that the conversion of Mn_3O_4 to γ -MnO₂ does not occur via an intermediate λ -MnO₂ phase, despite the fact that Mn₃O₄ contains the Mn₂O₄ spinel framework. Therefore, it would appear that the anhydrous λ -MnO₂ phase is a critical component in the manufacture of γ -MnO₂ phases with anomalously low water content.

The powder X-ray diffraction spectrum of the γ -MnO₂ sample prepared from LiMn₂O₄ at 40°C (Fig. 1c) contains certain broad, diffuse lines and other sharp lines; this phenomenon has been accounted for by de Wolff (11) in terms of a structure consisting of a random intergrowth of the rutile (β) - and ramsdellite-type structures. Heat treatment of this phase to 300°C removes the water almost entirely $(H^+ = 0.02 \text{ w/o})$ H_2O). The X-ray diffraction pattern of this heat-treated sample shows a product with β -MnO₂ characteristics (Fig. 1f) and contains both broad and sharp peaks, indicative of a significant degree of strain within the small crystals. A higher degree of crystallinity in the β -MnO₂ phases, as reflected by a sharpening of the broad peaks, could be achieved by heat treatment to 350° C.

The production of γ -MnO₂ from LiMn₂O₄, which is accompanied by some dissolution of manganese in the acidic solution, results in a substantial reduction in particle size. The average particle size in typical LiMn₂O₄, λ -MnO₂, and γ -MnO₂ samples was determined to be 20, 11, and 7.5 μ m, respectively.

Preliminary electrochemical tests on the MnO_2 phases derived from $LiMn_2O_4$ have been conducted in Li/MnO_2 cells of the type:

$Li/1 M LiClO_4$ in propylene

carbonate/MnO₂.

The data indicates that the β -MnO₂ phase (Sample 6) exhibits a slightly superior capacity to heat-treated EMD when discharged at low current rates (30 μ A/cm²). The good electrochemical activity which allows the particles to break up when lithiated can be attributed to the strain in the MnO₂ crystallites and their small particle size; the lithiated product "Li_xMnO₂," which forms during discharge, is virtually amorphous. Detailed electrochemical data on these manganese dioxide phases will be published elsewhere.

References

- R. HUBER, K. V. KORDESCH, A. KOZAWA, AND D. B. WOOD, *in* "Batteries," Vol. 1, "Manganese Dioxide" (K. V. Kordesch, Ed.), Dekker, New York (1974).
- 2. G. PISTOIA, J. Electrochem. Soc. 129, 1861 (1982).
- 3. H. IKEDA, U.S. Patent 4,133,856.
- 4. J. C. HUNTER, J. Solid State Chem. 39, 142 (1981).
- 5. A. MOSBAH, A. VERBAERE, AND M. TOURNOUX, Mater. Res. Bull. 18, 1375 (1983).
- 6. J. C. HUNTER AND F. B. TUDRON, Proc. Electrochem. Soc. 85(4), 441 (1985).

- 7. W. I. F. DAVID, M. M. THACKERAY, L. A. DE PICCIOTTO, AND J. B. GOODENOUGH, J. Solid State Chem. 67, 316 (1987).
- 8. W. K. ZWICKER, W. O. J. GROENEVELD MEIJER, AND H. W. JAFFE, Amer. Mineral. 47, 246 (1962).
- 9. JCPDS Powder X-ray diffraction file: 14-644.
- 10. T. OHZUKU, H. HIGASHIMURA, AND T. HIRAI, Electrochim. Acta 29, 779 (1984).
- 11. P. M. DE WOLFF, Acta Crystallogr. 12, 341 (1959).